Restoration of BDNF metabolism to improve MeCP2 knock-out mice symptoms

JC Roux

Marseille Medical Genetics – U1251, Marseille
Mecp2 and Bdnf

- Bdnf (Brain derived neurotrophic factor) is a neurotrophic factor essential for neuronal survival and synaptic connections (LTP/LTD).

- Bdnf is directly regulated by Mecp2 (Chen et al., 2003, Martinovitch et al, 2003)

- A lack of Mecp2 leads to:
 - A decrease of the Bdnf levels in the brain (Chen et al., 2003; Chang et al., 2006)
 - A defect in the axonal transport of the Bdnf (Roux et al., 2012; Xu et al., 2014)
Mecp2 and Bdnf

- Problem: BDNF does not cross the Blood Brain Barrier (BBB).

Chang et al, 2006
Indirect stimulation of Bdnf (Ampakines)

- Use of pharmacological compounds able to cross the BBB and to stimulate the production of BDNF.

David Katz
Indirect stimulation of Bdnf (Ampakines)

- Ampakines can increase BDNF levels.
- Restoration of a normal respiratory rhythm (after 3-days of treatment).
- No survival data.
- A pharmaceutical company (Cortex Pharmaceuticals) is responsible for clinical development.
Use of IGF-1 to mimic the BDNF action
Use of IGF-1 to mimic the BDNF action

- Improvement of the excitability properties of neurons
Use of IGF-1 to mimic the BDNF action

Safety, pharmacokinetics, and preliminary assessment of efficacy of mecamsermin (recombinant human IGF-1) for the treatment of Rett syndrome

Ongoing clinical trials (increased risk of Leukaemia?)
Stimulation of BDNF metabolism

- Is it possible to stimulate the Bdnf transport to the synapse?
- Is it possible to use gene therapy to increase BDNF level?
Stimulation of axonal BDNF transport

➢ Is it possible to stimulate the Bdnf transport to the synapse?
Knock-in mouse model

Mutation of Huntingtin

- **S421D** (Serine-Aspartic, HTTSD): constitutive phosphorylation
- **S421A** (Serine-Alanine, HTTSA): absence of phosphorylation

Neuronal culture microfluidic device

Videomicroscopy of axonal Bdnf transport
Huntingtin phosphorylation rescues BDNF transport in a Mecp2-deficient corticostriatal circuit

<table>
<thead>
<tr>
<th>Neurones HTT<sub>SD</sub> / HTT<sub>SA</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurones HTT<sub>SD</sub> / HTT<sub>SA</sub> + siMecp2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **WT**
- **HTT_{SD}**
- **HTT_{SA}**
- **WT siCt**
- **WT siMecp2**
- **HTT_{SD} siMecp2**
- **HTT_{SA} siMecp2**
In vivo phosphorylation

Crossing Mecp2+/- with HTT$_{SA}$ or HTT$_{SD}$ mice
Constitutive phosphorylation of HTT rescues the corticostriatal BDNF transport.
Constitutive phosphorylation of HTT improves the phenotype of the Mecp2-deficient mice
Constitutive phosphorylation of HTT improves the phenotype of the Mecp2-deficient mice
Constitutive phosphorylation of HTT improves the phenotype of the Mecp2-deficient mice
Pharmacological stimulation of HTT phosphorylation improves BDNF transport in a Mecp2-deficient corticostriatal circuit

Effet of FK506 on the axonal transport of Bdnf

Pardo et al., 2006
In vivo pharmacological stimulation of HTT phosphorylation improves the phenotype of the MeCP2-deficient mice

 FK506 increases HTT-P level

Lifespan

Body weight

Breathing
In vivo pharmacological stimulation of HTT phosphorylation improves the phenotype of the Mecp2-deficient mice
The inability to phosphorylate huntingtin prevents phenotype improvements due to FK506 treatment in *Mecp2-deficient mice*

- Treatment of *Mecp2* y/− HTT_{SA} with FK506

<table>
<thead>
<tr>
<th>Lifespan</th>
<th>Body weight</th>
</tr>
</thead>
</table>

Breathing (Apneas)
The inability to phosphorylate huntingtin prevents phenotype improvements due to FK506 treatment in *Mecp2-deficient mice*.
Conclusion

- The genetic and pharmacological approaches show that the phosphorylation of HTT at S421 significantly improves the RTT phenotype.

- Even if the use of FK506 appears interesting its use may be limited due to the side effects (immunosuppressant).

- Instead of playing with inhibition of the dephosphorylation we could alternatively increase the phosphorylation (IGF1/SGK1/AKT...).
Use of AAV-BDNF to treat Mecp2-deficient mice

- AAV=Adeno Associated Virus
- Does not cause illness
- No integration into the genome
- Low immune response
Use of AAV-BDNF to treat Mecp2-deficient mice

- Why use a AAV-BDNF vector rather than a vector that would put back a functional Mecp2 gene in place of the mutated one?

- Other and we have used AAV-Mecp2 vectors with some success. Nevertheless, the number of infected cells by AAV vectors is weak (6-8%) and only(mainly) the infected cells will be cured (cell autonomous). On the other hand, BDNF is secreted and AAV-BDNF infected cells can affect positively the non infected ones.

- Unfortunately, AAV vectors infect drastically the liver and overdosage of Mecp2 lead to hepatotoxicity.
Use of AAV-BDNF to treat Mecp2-deficient mice

In fact the dosage of Mecp2 is something complicated to control.
Use of AAV9-BDNF to treat Mecp2-deficient mice

Examen post-mortem (28j post-injection)
AAV9-BDNF improves the phenotype of the Mecp2-deficient mice

Lifespan

Survival AAV BDNF

- WT
- KO AAV BDNF
- KO

Body weight

Breathing (Apneas)
AAV9-BDNF improves the phenotype of the Mecp2-deficient mice

Motor coordination

Motor activity
AAV9-BDNF improves the phenotype of the MeCP2-deficient mice

Circadian motor activity
Conclusion

- The AAV9-BDNF vector appears to be a promising therapeutic agent and an interesting alternative to the use of conventional AAV-Mecp2 vectors.

- We are currently evaluating the molecular and cellular effects of the AAV9-BDNF vector.

- We will have to replicate the treatment with female mice.
Inserm U1251 – Aix marseille université
Laurent Villard
Jean-Christophe Roux
Yann Ehinger
Emilie Borloz
Camille Fulachier
Nicolas Panayotis
Valérie Matagne
Marie Solene Felix
Lydia Saidi

Grenoble Institut des Neurosciences
Frédéric Saudou
Julie Bruyère

Institut du Cerveau et de la Moelle
Yah-Se Abada
Benoit Delatour

http://www.germaco.net/